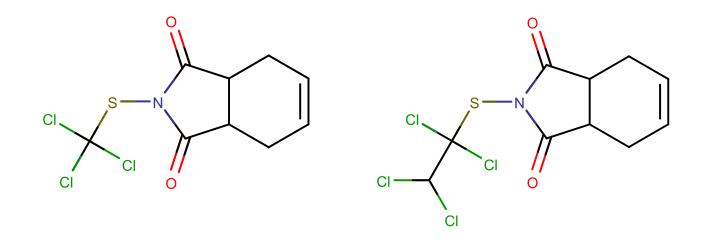
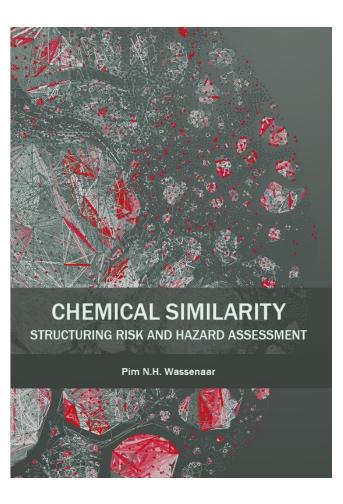

CHEMICAL SIMILARITY Structuring Risk and Hazard Assessment

Pim Wassenaar (pim.wassenaar@rivm.nl)

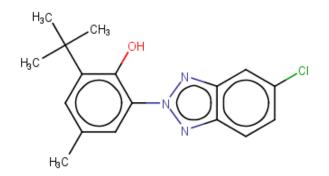
Chemical universe

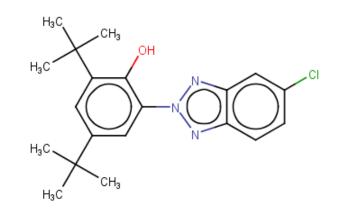

- > >350,000 chemicals and chemical mixtures
- > Goal: ensure safe use
- > Challenges:
 - Lack of (reliable) data
 - Time-consuming processes

Optimize risk and hazard assessment


- > Make more efficient use of available data and knowledge
- > Role for chemical similarity:
 - Similar property principle: Structural similar chemicals are likely to have similar properties

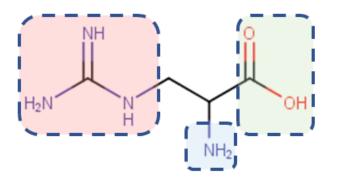
Aim of thesis

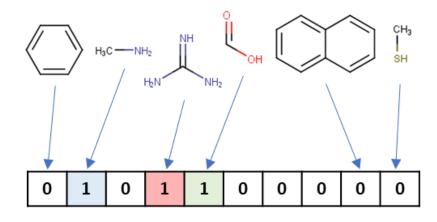

- Investigate how the use of chemical similarity could optimize the:
 - 1. Screening and prioritization; and
 - 2. Evaluation of chemicals
- > Primary focus on SVHCs
 - C, M, R, PBT/vPvB and ED



1. Early and effective signaling of concerns

- > Signal potential concerns as early as possible:
 - Before widespread exposure
 - Based on limited available data
 - Alternative to resource-intensive expert judgements
- Similarity-based screening models
 - Identify potential substances of concern based on structural similarity to known SVHCs





Similarity-based screening models

- General methodology
 - Fingerprints
 - Similarity coefficients
 - Threshold values

Step 1: Define structure

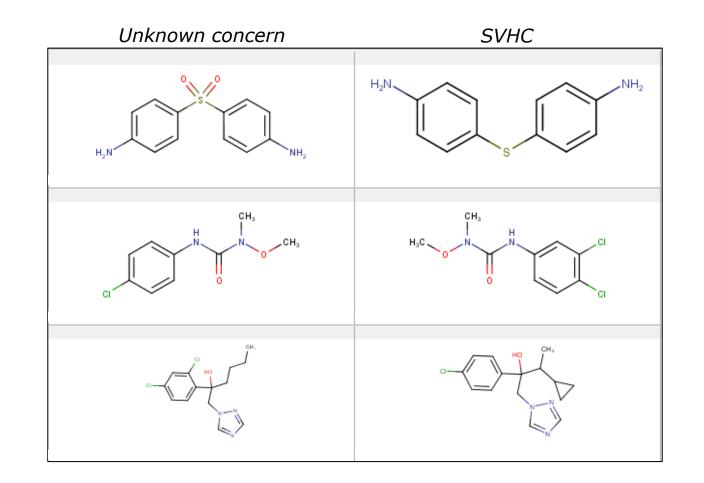
Similarity-based screening models

- General methodology
 - Fingerprints
 - Similarity coefficients
 - Threshold values
- Model optimization and validation
 - Tested > 500 model combinations
 - Using list of SVHC and non-SVHC substances
 - > 5 sub-models for various SVHC endpoints

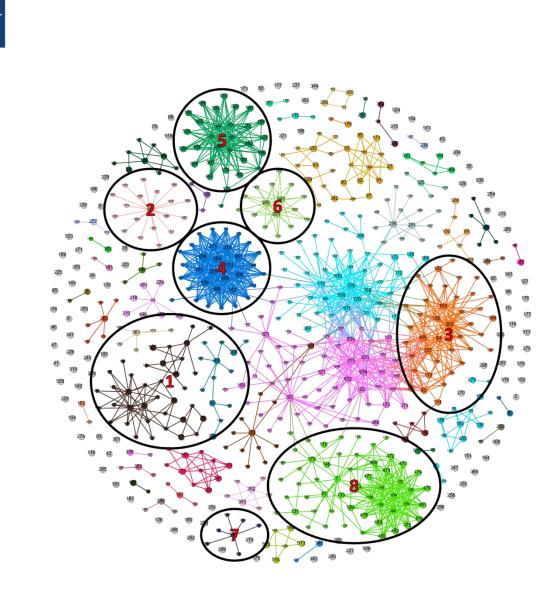
Step 2: Calculate similarity

Substance A >	0	1	0	1	1	0	0	0	0	0
Substance B→	0	1	1	0	1	0	0	0	1	0
	D	С	В	Α	С	D	D	D	В	D

$$Sab = \frac{N_c}{N_a + N_B + N_c}$$


Step 3: Comparison to threshold

Value between 0 and 1


Results

 Individual substances with a high similarity to an SVHC

Results

- Individual substances with a high similarity to an SVHC
- > Groups of substances
 - Effective use of available data
 - Reduce (animal) testing
 - Accelerate the Risk Assessment
 - Prevent 'regrettable substitution'
- > Trigger for further evaluation:
 - Similar biological properties/effects?

Application – screening tool

ZZS similarity tool

- > Freely accessible web-based tool
 - Ease of use and interpretation
 - Provide clear follow-up
 - ≈ 6000 unique visitors!

ZZS-similarity tool Risico's	s van : × +										-		
← → C @ ⊕	https://rvszoeksysteem.rivn	n.nl/ZzsSimilarityTool				$\forall \rho$	06	٩	τô	£¦≣	Ē	۲	
			嬍	en Milieu	van Volksgezondheid,								
Zoek stoffen 🛛 Bekijk 🏒	S-lijsten ZZS-navigato	ZZS similarity tool	Index	k stoffen	Risico's van stoffen 🧖	Hel	р Я						
Search											∨ hi	de	
Enter the SMILES or the CA	S-number of a substance	to find structural similar	ZZS sub	ostances. (D								
SMILES													
CAS-number													
[Calculate												
Batch search											> sho	w	1
Model description											> sho	w	

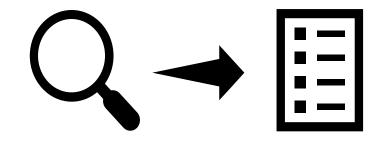
Risk assessment

- Identify and prioritize potential substances of concern for further evaluation
 - REACH-registered substances
 - Monitoring data
 - Support licensing authorities

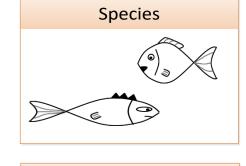
Safe-by-design (R&D)

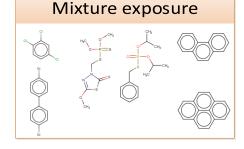
- > Identify potential adverse effects
- Guiding the identification of suitable candidates/alternatives

• Wassenaar et al. (2019). <u>https://doi.org/10.1016/j.comtox.2019.100110</u>


- Wassenaar et al. (2021). <u>https://doi.org/10.1016/j.yrtph.2020.104834</u>
- Wassenaar et al. (2022). <u>https://doi.org/10.1002/jcc.26859</u>

<u>https://rvszoeksysteem.rivm.nl/ZzsSimilarityTool</u>

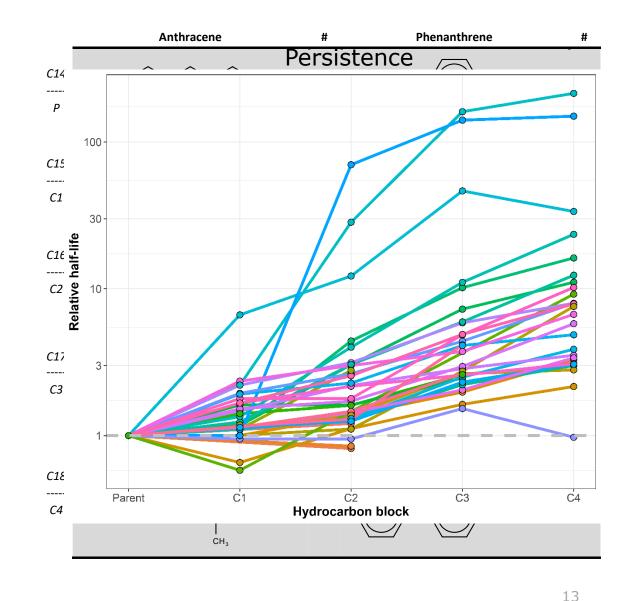

2. From screening to evaluation


- Does chemical similarity also translate into biological similarity?
 - Influence of variability
 - Chemical similarity for evaluation

Variability and uncertainty

- To conclude on biological similarity, we need to know the variation in biological activity
- Case study on BCFs
 - Collected a list of high quality BCFs tested for single chemicals
 - Identified factors contributing to variability
 - Quantified unexplained variability
 - Laboratory practices
 - Biological variation (intra-species differences)
- Results suggest:
 - For B-assessment: use multiple experiments to capture variability
 - For similarity assessment: difficult to conclude on biological similarity based on single study outcomes.

12


BCF	Range ± 2 xSD
100	38-262
500	191-1312
2000	762-5249
5000	1905-13122
10000	3810-26244

PBT evaluation

- > Evaluation of PBT/vPvB properties of a group of structurally similar chemicals:
 - Alkylated three-ring PAHs = 884 constituents
 - Experimental and QSAR data
- Used WoE approach and trend analyses
 - Lack of 'reliable/relevant' experimental data
- Conclusion: alkylated three-ring PAHs are more or equally P, B and T compared to parent three-ring PAHs
- Confirms the validity of chemical similarity as screening feature

14

Thesis conclusions

General conclusions

More extensive use of <u>chemical similarity</u> can contribute to:

- Effective and efficient use available data and knowledge
- Speed-up risk assessment (groups)

Impact

Acting at the <u>science-policy interface</u> (Leiden University & RIVM):

- Results are directly incorporated and applied in practice
- Provides direct opportunities to:
 - Develop safe(r) chemical alternatives (SbD)
 - Stimulate the transition towards a 'toxic-free' environment

Challenges in chemical regulation:

- Lack of (reliable) data
- Time-consuming processes

Outlook

Explore the use of <u>Artificial</u> <u>Intelligence / Machine Learning</u> to optimize risk assessment

Thanks for your attention

Jniversiteit

Leiden

Pim Wassenaar (pim.wassenaar@rivm.nl)