Reliability in Chemical Footprint Modelling of Consumer Products

MÉLANIE DOUZIECH

PhD Thesis Radboud University (4.12.2019) Promotoren: Prof. dr. M.A.J. Huijbregts and Prof. dr. H. King Co-Promotoren: Dr. R. van Zelm and Dr. R. Oldenkamp

Product Environmental Footprint

Chemical footprint

Ecotoxicity Chemicals

Land

Raw material sourcing

Biodiversity

Raw material sourcing

Climate Energy use

Water

Availability

Human toxicity Chemicals

Amount of chemical emitted

- Chemicals emitted yearly from personal care products use and their range
 - Consumer surveys from France, the Netherlands, South Korea, and the USA
 - Three products: shampoo, conditioner, bodywash
 - Three surfactants and two preservatives
 - 1. Product used individually
 - Use habit survey data for average individual use (U)
 - Four different countries (V)
 - 2. Chemical fraction in product
 - Patent data, published formulations (U)
 - 3. Fraction removed
 - Estimated with SimpleTreat from the chemical properties (U)
 - Number of connected persons (V)

V: Spatial Variability U: Uncertainty

Amount of chemical emitted

- Uncertainty from fraction removed
- Spatial variability important for hotspots identification
- Drawbacks: data requirement, variability in study design

Removal by wastewater treatment plants

 Quantify the influence 1539 measured removal efficiencies of fragrances, surfactants, of internal and external and pharmaceuticals + physico-chemical properties factors on the **removal** efficiencies of a set of chemicals in activated $\left(\frac{\Delta C_{eff}}{\bar{X}_{C}}\right)$ sludge WWTPs Meta-analysis: Effect size = $\ln($ Mixed-effects model (542 data points) $\ln\left(\frac{X_{C_{eff}}}{\bar{X}_{C_{in}}}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + u_i$ Internal **External** Fixed effects Random effects Physico-chemical Technological Internal and external Study, chemical, properties variability country, WWTP factors

Removal by wastewater treatment plants

Readily biodegradable
Not readily biodegradable

- High mean weighted removal efficiency (82%)
- Readily biodegradable better removed than not readily biodegradable ones
- Improve predictive performance
 - Deconjugation processes
 - Electrochemical interactions

Sources of variability and uncertainty

 Influence of variable and uncertain parameters on the Potential ecotoxicological impact (PEI) of a shampoo use

 \rightarrow 2D Monte Carlo Simulation

Sources of variability and uncertainty

- Variability in shampoo composition important
- Spread driven by the uncertainty in the potential effect on aquatic ecosystems
- Effect factor (=0.5/HC50) based on ecotoxicity values from only three species

Effect on the freshwater ecosystem

- Reliable and representative hazardous concentrations estimated from *in silico* methods
 - 1. Quantitative Structure Activity Relationships (QSARs) $\sum_{c} = f(Chemical \ properties)$
 - 2. Interspecies Correlation Estimation (ICE) equations

 $= a + b \overline{\cdot}$

- Reliable: Uncertainty in QSAR and ICE, sampling uncertainty
- Representative: Bias = HCx_{AllMeasured} / HCx_{estimated}

Effect on the freshwater ecosystem

• Combining QSAR and ICE leads to hazardous concentrations

- With lower spread in uncertainty compared to 3 measured
- With comparable bias to 3 measured
- Chemicals with few ecotoxicity data (Applicability domain !)

- Important to include product formulation
- Know the size of wastewater treatment plants to identify hotspots
- Improve modelled removal efficiencies from wastewater treatment plants
 - Deconjugation processes
 - Electrochemical interactions
- Reduce uncertainty of the chemical effect quantification using *in silico* approaches
- 5 articles with 19 citations maximum (total 34)

ADDITIONAL SLIDES

Aknowledgments: This project was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641459 (RELIEF).

2D Monte Carlo Simulation

Sources of uncertainty and variability

Parameter	Uncertainty	Variability		
A _P	n.a.	Inter-individual variability in		
		product use habits		
F _{mass,c,P}	n.a.	Each product formulation		
		considered was used as the		
		starting point to compute a set		
		of PEI while varying the		
		uncertain and variable		
		parameters		
FF _{c.r}	Vapor pressure at 25°C (P_{vap}), solubility at 25°C	Spatial variability from the 16		
	(Sol), organic carbon-water partitioning coefficient	regions implemented in USEtox		
	(K_{oc}), pKa (negative base-10 logarithm of the acid			
	dissociation constant), and degradation rate			
	constants in air (k_{degA}) , water (k_{degW}) , sediment			
	(k _{degSd}), and soil (k _{degSl})			
XF _c	pKa and organic carbon-water partitioning	Spatial variability from the 16		
	coefficient (K _{oc})	regions implemented in USEtox		
E _c	Vapour pressure at 25°C (P_{vap}), solubility at 25°C	Technological variability		
	(Sol), organic carbon-water partitioning coefficient	between activated sludge		
	(K _{oc}), pKa, and degradation rate constants in	wastewater treatment plants		
	wastewater (k _{degWW})	(WWTPs) (Franco et al. 2013)		
EF	Ecotoxicity values; Limited sample size			

Chapter 5 Table 6

Sources of uncertainty and variability

a. QSAR train	ing data set ava	ilable			рКа
Property	\bar{x}	Uncertainty quantification	n	Estimation	
				Method	
P _{vap}	$Log (P_{vap})$	(Mendenhall et al. 2009)	3037	(EPA 2012),	
				MPBVP Help	
Sol	Log (Sol)	(Mendenhall et al. 2009)	817	(EPA 2012),	
				WSKOWWIN	k_{degA}
				Help	
K _{oc} acid	Log (K _{oc})	(Mendenhall et al. 2009)	62	(Franco and	
				Trapp 2008)	
K _{oc} base	Log (K _{oc})	(Mendenhall et al. 2009)	66	(ECETOC	EC50 _{ECOSA}
				2013)	
K _{oc} neutral	Log (K _{OC})	(Mendenhall et al. 2009)	81	(Sablijc et al.	HC50
				1995)	
EC50 _{PeCPs}	p <i>EC50</i>	(Mendenhall et al. 2009) an	d 72 D. magna	(Gramatica	c. Specific
		published mean squared errors.	20 P. subcapitata	et al. 2014;	Property
				Gramatica et	
			67 P. promelas	al. 2016;	DT50
				Gramatica et	
				al. 2013)	
					k_{degW}
					k_{degSd}

Quantification of uncertainty for physico-chemical properties

b. QSAR training data set not available - Error in estimating mean value only \overline{x} Property Uncertainty quantification Estimation Method Standard deviation provided by estimation program(ACD/Labs рКа per chemical 2017) and Unilever internal documentati on Standard deviation derived from the coefficient of (van Zelm variation of 0.4 and Huijbregts 2013) EC50 Lognormal distribution following (Reuschenbach et al. (EPA 2017) 2008) (Huijbregts Log (HC50) Standard deviation from estimated EC50 values et al. 2010) approaches \overline{x} Uncertainty quantification Estimation Programme Vary according to category (Appendix A.5, Section(Aronson et Log (median(DT50)) A.5.2) 2006; al. Sarfraz Iqbal et al. 2013) Derived from degradation rate constant (DT50): $k_{deaW} = \ln(2) / DT50$ Derived from degradation rate constant (DT50): $k_{deaSd} = \ln(2) / (DT50/9)$ k_{degSl} Derived from degradation rate constant (DT50): $k_{degSl} = \ln(2) / (D_T c_0^2 0/2)$ (EPA 2017) Derived from k_{degW} : $k_{degWW} = 30 \cdot k_{degW}$ k_{degWW}

Chapter 5 Table 7

Sources of uncertainty and variability – Included chemicals

Chemical Name	Chemical Name	Chemical Name
2,6-dimethyl-7-octen-2-ol	dimethiconol	isopropyl myristate
4-tert-butylcyclohexyl acetate	Dipropylene Glycol constituant 1	laureth 1
5,5,6-trimethylbicyclohept-2-ylcyclohexanol	Dipropylene Glycol constituant 2	limonene
alpha-isomethyl ionone	Dipropylene Glycol constituant 3	linalool
amodimethicone	disodium EDTA	linalyl acetate
anisaldehyde	dmdm hydantoin	lysine HCL
arginine	edta	menthol
benzoic acid	ethyl hydroxypyrone	methylchloroisothiazolinone
benzophenone-4	ethyl linalool	methyldihydrojasmonate
benzyl acetate	ethyl trimethylcyclopentene butenol	methylenedioxyphenyl methylpropanal
benzyl alcohol	ethyl vanillin	methylisothiazolinone
benzyl salicylate	ethylene brassylate	methylparaben
butylphenyl methylpropional	ethylene dodecanedioate	octahydrocoumarin
c11-15 pareth-7	ethylhexyl methoxycinnamate	oxacyclohexadec-12-en-2-one, (12e)-
caffeine	gamma-decalactone	panthenol
carbomer	gamma-nonalactone	phenethyl alcohol
ceramide NG	gamma-undecalactone	phenoxyethanol
cetrimonium chloride	geraniol	phenoxyethyl isobutyrate
ci 17200	gluconolactone	phenylisohexanol
ci 19140	glucose	p-menthan-7-ol
ci 77266	glycerin	polyoxyethylene lauryl ether
cis-2-tert-butylcyclohexyl acetate	glycol distearate	propylene glycol
citric acid	grapefruit oil terpenes	salicylic acid
citronellol	guar hydroxypropyltrimonium chloride constituant 1	sodium ascorbyl phosphate
citrus aurantium dulcis (orange) peel oil	guar hydroxypropyltrimonium chloride constituant 2	sodium laureth sulfate
climbazole	hexose	tea-dodecylbenzenesulfonate
cocamide DEA constituent 1	hexyl acetate	tetramethyl acetyloctahydronaphthalenes
cocamide DEA constituent 2	hexyl cinnamal	tetrasodium EDTA
cocamide DEA constituent 3	hexyl salicylate	trehalose
cocamide MEA	hydroxypropyl methylcellulose constituant 1	trideceth-12
cocamidopropyl betaine	hydroxypropyl methylcellulose constituant 2	triethanolamine
coumarin	imidazolidinyl urea	vitamin e acetate
cyclamen aldehyde	isoamyl allylglycolate	zinc gluconate
dimethicone	Isobutenyl Methyltetrahydropyran	zinc pyrithione

Chapter 5 Table A5.4

Effect on the freshwater ecosystem – Scenarios

	Scenario	Algae	Fish	Daphnia	Other	Number of EC50
(1)	AllMeasured	All available	e measured B	EC50 values		10 to 265
(2)	3Measured	measured	measured	measured	none	3
(3)	3QSAR	QSAR	QSAR	QSAR	none	3
(4)	3QSAR-ICE	QSAR	QSAR	QSAR	all ICE estimates	100
(5)	A-F-QSAR-ICE	QSAR	QSAR	none	all ICE estimates	73
(5)	A-D-QSAR-ICE	QSAR	none	QSAR	all ICE estimates	37
(5)	F-D-QSAR-ICE	none	QSAR	QSAR	all ICE estimates	87
(6)	A-QSAR-ICE	QSAR	none	none	all ICE estimates	11
(6)	F-QSAR-ICE	none	QSAR	none	all ICE estimates	61
(6)	D-QSAR-ICE	none	none	QSAR	all ICE estimates	28

Quantifying variability in removal efficiencies of chemicals in activated sludge wastewater treatment plants-a meta-analytical approach M Douziech, IR Conesa, A Benítez-López, A Franco, M Huijbregts, Environmental Science: Processes & Impacts 20 (1), 171-182	19	2018
Are wave and tidal energy plants new green technologies? M Douziech, S Hellweg, F Verones Environmental science & technology 50 (14), 7870-7878	16	2016
Confronting variability with uncertainty in the ecotoxicological impact assessement of down-the-drain products MAJH Mélanie Douziech, Rik Oldenkamp, Rosalie van Zelm, Henry King, A. Jan Environment International 126, 37-45	10	2019
Estimation of chemical emissions from down-the-drain consumer products using consumer survey data at country and wastewater treatment plant level MAJH M Douziech, R van Zelm, R Oldenkamp, A Franco, A. J Hendriks, H King Chemosphere 193, 32-41	3	2018
Mean Species Abundance as a Measure of Ecotoxicological Risk S Hoeks, MAJ Huijbregts, M Douziech, AJ Hendriks, R Oldenkamp Environmental toxicology and chemistry 39 (11), 2304-2313	2	2020
Definition of LCA Guidelines in the Geothermal Sector to Enhance Result Comparability ML Parisi, M Douziech, L Tosti, P Pérez-López, B Mendecka, S Ulgiati, Energies 13 (14), 3534	2	2020
A regression-based model to predict chemical migration from packaging to food M Douziech, A Benítez-López, A Ernstoff, C Askham, AJ Hendriks, H King, Journal of Exposure Science & Environmental Epidemiology 30 (3), 469-477	1	2020
Reliable and representative in silico predictions of freshwater ecotoxicological hazardous concentrations M Douziech, AMJ Ragas, R van Zelm, R Oldenkamp, AJ Hendriks, H King, Environment international 134, 105334	1	2020