Ion complexation modelling of ferrihydrite:

From fundamentals of metal (hydr)oxide nanoparticles to applications in soil systems

Juan Carlos Mendez Fernandez

Utrecht, 6th of April 2023

About myself...

- B.Sc. in Agriculture Engineering (University of Costa Rica)
- M.Sc. in Environmental Sciences (Wageningen University)
- PhD in Soil Chemistry and Environmental Geochemistry (Wageningen University)
- Researcher at the Faculty of Agri-Food Sciences and at the Agronomical Research Centre (CIA-UCR)

Metal oxides in soils

- Reactive charged surfaces
- Control availability of nutrients and pollutants
- Soil organic carbon storage

Ferrihydrite nanoparticles

• Most important iron oxide nanoparticle in nature

• Small size (~2–6 nm) \rightarrow high surface reactivity ~1 m² soil \rightarrow 10 million m² surface reactivity

• High affinity for nutrients, pollutants and SOM

Objectives and scope

Fundamentals

I. Surface reactivity of ferrihydrite

II. Adsorption of phosphate to ferrihydrite

III. Reactivity of natural oxides in soils

Applications

I. Reactivity of ferrihydrite

From:

- Mendez J.C., Hiemstra T. 2020. Chemical Geology. 532: 119304
- Hiemstra T., Mendez J.C., Li J. 2019. Environ. Sci. Nano. 6(3): 820-833

Specific surface area (SSA)

- Defines the **reactivity** of ferrihydrite
- Depends on the formation conditions (e.g. pH)

How to measure the SSA?

Phosphate as probe molecule

Practical and reproducible

How does the SSA change?

Time and pH dependency of SSA

Consistency between ion adsorption experiments

II. Adsorption interactions of phosphate

From:

- Mendez J.C., Hiemstra T. 2020. Geochim. Cosmochim. Acta. 286: 289-305
- Mendez J.C., Hiemstra T. 2020. ACS Earth Space Chem. 4(4): 545-557
- Mendez J.C., Hiemstra T. 2019. ACS Earth Space Chem. 3(1): 129-141

Cation (+) & Anion (–)

Competitive adsorption

Anion (–) & Anion (–)

Cation (+) & Anion (-)

Calcium - Phosphate

Competitive adsorption

Anion (–) & Anion (–) Carbonate - Phosphate

III. Applications to soil samples

From:

- Mendez J.C., Koopmans G.F., Hiemstra T. Environ. Sci. Technol. 54: 11990 12000
- Mendez J.C.*, Van Eynde E.*, Hiemstra T., Comans R.N.J. Geoderma. 406:115517
- Van Eynde E.*, Mendez J.C., Hiemstra T., Comans R.N.J (to be submitted)

Ferrihydrite as proxy for natural oxides

Interpretation of PO₄ – CO₃ in soil extractions

Ferrihydrite as proxy for natural oxides

 "Ferrihydrite-like" nanoparticles (~2–5 nm) control the surface reactivity in these soils

Implications

 Better understanding and predictions of the availability of nutrients and pollutants

 Role of metal (hydr)oxides in soil organic carbon stabilization

Summing up

• Improved insights into surface reactivity of ferrihydrite

• Understand the role of ferrihydrite in the reactivity of soils

Interactions affecting PO₄ availability in soils

Applications in my current research

Reactivity of nanocrystalline minerals in volcanic soils

- Abundance of highly reactive nanocrystalline minerals
- Low content of available P and high P retention capacity
- Low efficiency of P fertilizer applications

Thank you!

Juan Carlos Méndez Fernández juancarlos.mendez@ucr.ac.cr

